Distinct requirements for Ku in N nucleotide addition at V(D)J- and non-V(D)J-generated double-strand breaks.
نویسندگان
چکیده
Loss or addition of nucleotides at junctions generated by V(D)J recombination significantly expands the antigen-receptor repertoire. Addition of nontemplated (N) nucleotides is carried out by terminal deoxynucleotidyl transferase (TdT), whose only known physiological role is to create diversity at V(D)J junctions during lymphocyte development. Although purified TdT can act at free DNA ends, its ability to add nucleotides (i.e. form N regions) at coding joints appears to depend on the nonhomologous end-joining factor Ku80. Because the DNA ends generated during V(D)J rearrangements remain associated with the RAG proteins after cleavage, TdT might be targeted for N region addition through interactions with RAG proteins or with Ku80 during remodeling of the post-cleavage complex. Such regulated access would help to prevent TdT from acting at other types of broken ends and degrading the fidelity of end joining. To test this hypothesis, we measured TdT's ability to add nucleotides to endonuclease-induced chromosomal and extrachromosomal breaks. In both cases TdT added nucleotides efficiently to the cleaved DNA ends. Strikingly, the frequency of N regions at non-V(D)J-generated ends was not dependent on Ku80. Thus our results suggest that Ku80 is required to allow TdT access to RAG post-cleavage complexes, providing support for the hypothesis that Ku is involved in disassembling or remodeling the post-cleavage complex. We also found that N regions were abnormally long in the absence of Ku80, indicating that Ku80 may regulate TdT's activity at DNA ends in vivo.
منابع مشابه
Terminal deoxynucleotidyl transferase requires KU80 and XRCC4 to promote N-addition at non-V(D)J chromosomal breaks in non-lymphoid cells
Terminal deoxynucleotidyl transferase (TdT) is a DNA polymerase that increases the repertoire of antigen receptors by adding non-templated nucleotides (N-addition) to V(D)J recombination junctions. Despite extensive in vitro studies on TdT catalytic activity, the partners of TdT that enable N-addition remain to be defined. Using an intrachromosomal substrate, we show here that, in Chinese hamte...
متن کاملDNA strand break rejoining defect in xrs-6 is complemented by transfection with the human Ku80 gene.
The radiosensitive mutant xrs-6, derived from Chinese hamster ovary cell line CHO-K1, has been demonstrated to be defective in DNA double-strand break repair and also in its proficiency to undergo V(D)J recombination. Recent work has provided both genetic and biochemical evidence that the M(r) 80,000 subunit of the Ku protein is able to complement the radiosensitivity and the V(D)J recombinatio...
متن کاملDistinct roles of XRCC4 and Ku80 in non-homologous end-joining of endonuclease- and ionizing radiation-induced DNA double-strand breaks
Non-homologous end-joining (NHEJ) of DNA double-strand breaks (DSBs) is mediated by two protein complexes comprising Ku80/Ku70/DNA-PKcs/Artemis and XRCC4/LigaseIV/XLF. Loss of Ku or XRCC4/LigaseIV function compromises the rejoining of radiation-induced DSBs and leads to defective V(D)J recombination. In this study, we sought to define how XRCC4 and Ku80 affect NHEJ of site-directed chromosomal ...
متن کاملAssociation of terminal deoxynucleotidyl transferase with Ku.
Terminal deoxynucleotidyl transferase (TdT) catalyzes the addition of nucleotides at the junctions of rearranging Ig and T cell receptor gene segments, thereby generating antigen receptor diversity. Ku is a heterodimeric protein composed of 70- and 86-kDa subunits that binds DNA ends and is required for V(D)J recombination and DNA double-strand break (DSB) repair. We provide evidence for a dire...
متن کاملMicrosoft Word - 2013 manuscript.55.docx
Nonhomologous end joining repairs DNA double-strand breaks created by ionizing radiation and V(D)J recombination. Ku, XRCC4/Ligase IV (XL) and XLF have a remarkable mismatched end (MEnd) ligase activity, particularly for ends with mismatched 3' overhangs, but the mechanism has remained obscure. Here, we showed XL required Ku to bind DNA, while XLF required both Ku and XL to bind DNA. We detecte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic acids research
دوره 32 6 شماره
صفحات -
تاریخ انتشار 2004